26 research outputs found

    Minimal Ramsey graphs, orthogonal Latin squares, and hyperplane coverings

    Get PDF
    This thesis consists of three independent parts. The first part of the thesis is concerned with Ramsey theory. Given an integer q≥2q\geq 2, a graph GG is said to be \emph{qq-Ramsey} for another graph HH if in any qq-edge-coloring of GG there exists a monochromatic copy of HH. The central line of research in this area investigates the smallest number of vertices in a qq-Ramsey graph for a given HH. In this thesis, we explore two different directions. First, we will be interested in the smallest possible minimum degree of a minimal (with respect to subgraph inclusion) qq-Ramsey graph for a given HH. This line of research was initiated by Burr, Erdős, and Lovász in the 1970s. We study the minimum degree of a minimal Ramsey graph for a random graph and investigate how many vertices of small degree a minimal Ramsey graph for a given HH can contain. We also consider the minimum degree problem in a more general asymmetric setting. Second, it is interesting to ask how small modifications to the graph HH affect the corresponding collection of qq-Ramsey graphs. Building upon the work of Fox, Grinshpun, Liebenau, Person, and Szabó and Rödl and Siggers, we prove that adding even a single pendent edge to the complete graph KtK_t changes the collection of 2-Ramsey graphs significantly. The second part of the thesis deals with orthogonal Latin squares. A {\em Latin square of order nn} is an n×nn\times n array with entries in [n][n] such that each integer appears exactly once in every row and every column. Two Latin squares LL and L′L' are said to be {\em orthogonal} if, for all x,y∈[n]x,y\in [n], there is a unique pair (i,j)∈[n]2(i,j)\in [n]^2 such that L(i,j)=xL(i,j) = x and L′(i,j)=yL'(i,j) = y; a system of {\em kk mutually orthogonal Latin squares}, or a {\em kk-MOLS}, is a set of kk pairwise orthogonal Latin squares. Motivated by a well-known result determining the number of different Latin squares of order nn log-asymptotically, we study the number of kk-MOLS of order nn. Earlier results on this problem were obtained by Donovan and Grannell and Keevash and Luria. We establish new upper bounds for a wide range of values of k=k(n)k = k(n). We also prove a new, log-asymptotically tight, bound on the maximum number of other squares a single Latin square can be orthogonal to. The third part of the thesis is concerned with grid coverings with multiplicities. In particular, we study the minimum number of hyperplanes necessary to cover all points but one of a given finite grid at least kk times, while covering the remaining point fewer times. We study this problem for the grid F2n\mathbb{F}_2^n, determining the number exactly when one of the parameters nn and kk is much larger than the other and asymptotically in all other cases. This generalizes a classic result of Jamison for k=1k=1. Additionally, motivated by the recent work of Clifton and Huang and Sauermann and Wigderson for the hypercube { 0,1 }n⊆Rn\set{0,1}^n\subseteq\mathbb{R}^n, we study hyperplane coverings for different grids over R\mathbb{R}, under the stricter condition that the remaining point is omitted completely. We focus on two-dimensional real grids, showing a variety of results and demonstrating that already this setting offers a range of possible behaviors.Diese Dissertation besteht aus drei unabh\"angigen Teilen. Der erste Teil beschäftigt sich mit Ramseytheorie. Für eine ganze Zahl q≥2q\geq 2 nennt man einen Graphen \emph{qq-Ramsey} f\"ur einen anderen Graphen HH, wenn jede Kantenf\"arbung mit qq Farben einen einfarbigen Teilgraphen enthält, der isomorph zu HH ist. Das zentrale Problem in diesem Gebiet ist die minimale Anzahl von Knoten in einem solchen Graphen zu bestimmen. In dieser Dissertation betrachten wir zwei verschiedene Varianten. Als erstes, beschäftigen wir uns mit dem kleinstm\"oglichen Minimalgrad eines minimalen (bezüglich Teilgraphen) qq-Ramsey-Graphen f\"ur einen gegebenen Graphen HH. Diese Frage wurde zuerst von Burr, Erd\H{o}s und Lov\'asz in den 1970er-Jahren studiert. Wir betrachten dieses Problem f\"ur einen Zufallsgraphen und untersuchen, wie viele Knoten kleinen Grades ein Ramsey-Graph f\"ur gegebenes HH enthalten kann. Wir untersuchen auch eine asymmetrische Verallgemeinerung des Minimalgradproblems. Als zweites betrachten wir die Frage, wie sich die Menge aller qq-Ramsey-Graphen f\"ur HH verändert, wenn wir den Graphen HH modifizieren. Aufbauend auf den Arbeiten von Fox, Grinshpun, Liebenau, Person und Szabó und Rödl und Siggers beweisen wir, dass bereits der Graph, der aus KtK_t mit einer h\"angenden Kante besteht, eine sehr unterschiedliche Menge von 2-Ramsey-Graphen besitzt im Vergleich zu KtK_t. Im zweiten Teil geht es um orthogonale lateinische Quadrate. Ein \emph{lateinisches Quadrat der Ordnung nn} ist eine n×nn\times n-Matrix, gef\"ullt mit den Zahlen aus [n][n], in der jede Zahl genau einmal pro Zeile und einmal pro Spalte auftritt. Zwei lateinische Quadrate sind \emph{orthogonal} zueinander, wenn f\"ur alle x,y∈[n]x,y\in[n] genau ein Paar (i,j)∈[n]2(i,j)\in [n]^2 existiert, sodass es L(i,j)=xL(i,j) = x und L′(i,j)=yL'(i,j) = y gilt. Ein \emph{k-MOLS der Ordnung nn} ist eine Menge von kk lateinischen Quadraten, die paarweise orthogonal sind. Motiviert von einem bekannten Resultat, welches die Anzahl von lateinischen Quadraten der Ordnung nn log-asymptotisch bestimmt, untersuchen wir die Frage, wie viele kk-MOLS der Ordnung nn es gibt. Dies wurde bereits von Donovan und Grannell und Keevash und Luria studiert. Wir verbessern die beste obere Schranke f\"ur einen breiten Bereich von Parametern k=k(n)k=k(n). Zusätzlich bestimmen wir log-asymptotisch zu wie viele anderen lateinischen Quadraten ein lateinisches Quadrat orthogonal sein kann. Im dritten Teil studieren wir, wie viele Hyperebenen notwendig sind, um die Punkte eines endlichen Gitters zu überdecken, sodass ein bestimmter Punkt maximal (k−1)(k-1)-mal bedeckt ist und alle andere mindestens kk-mal. Wir untersuchen diese Anzahl f\"ur das Gitter F2n\mathbb{F}_2^n asymptotisch und sogar genau, wenn eins von nn und kk viel größer als das andere ist. Dies verallgemeinert ein Ergebnis von Jamison für den Fall k=1k=1. Au{\ss}erdem betrachten wir dieses Problem f\"ur Gitter im reellen Vektorraum, wenn der spezielle Punkt überhaupt nicht bedeckt ist. Dies ist durch die Arbeiten von Clifton und Huang und Sauermann und Wigderson motiviert, die den Hyperwürfel { 0,1 }n⊆Rn\set{0,1}^n\subseteq \mathbb{R}^n untersucht haben. Wir konzentrieren uns auf zwei-dimensionale Gitter und zeigen, dass schon diese sich sehr unterschiedlich verhalten können

    Interval Orders with Restrictions on the Interval Lengths

    Get PDF
    This thesis examines several classes of interval orders arising from restrictions on the permissible interval lengths. We first provide an accessible proof of the characterization theorem for the class of interval orders representable with lengths between 1 and k for each k in {1,2,...}. We then consider the interval orders representable with lengths exactly 1 and k for k in {0,1,...}. We characterize the class of interval orders representable with lengths 0 and 1, both structurally and algorithmically. To study the other classes in this family, we consider a related problem, in which each interval has a prescribed length. We derive a necessary and sufficient condition for an interval order to have a representation with a given set of prescribed lengths. Using this result, we provide a necessary condition for an interval order to have a representation with lengths 1 and 2

    Enumerating extensions of mutually orthogonal Latin squares

    Get PDF
    Two n×n Latin squares L1,L2 are said to be orthogonal if, for every ordered pair (x, y) of symbols, there are coordinates (i, j) such that L1(i,j)=x and L2(i,j)=y. A k-MOLS is a sequence of k pairwise-orthogonal Latin squares, and the existence and enumeration of these objects has attracted a great deal of attention. Recent work of Keevash and Luria provides, for all fixed k, log-asymptotically tight bounds on the number of k-MOLS. To study the situation when k grows with n, we bound the number of ways a k-MOLS can be extended to a (k+1)-MOLS. These bounds are again tight for constant k, and allow us to deduce upper bounds on the total number of k-MOLS for all k. These bounds are close to tight even for k linear in n, and readily generalise to the broader class of gerechte designs, which include Sudoku squares

    Subspace coverings with multiplicities

    Get PDF
    We study the problem of determining the minimum number f(n,k,d)f(n,k,d) of affine subspaces of codimension dd that are required to cover all points of F2n∖{0⃗}\mathbb{F}_2^n\setminus \{\vec{0}\} at least kk times while covering the origin at most k−1k-1 times. The case k=1k=1 is a classic result of Jamison, which was independently obtained by Brouwer and Schrijver for d=1d = 1. The value of f(n,1,1)f(n,1,1) also follows from a well-known theorem of Alon and F\"uredi about coverings of finite grids in affine spaces over arbitrary fields. Here we determine the value of this function exactly in various ranges of the parameters. In particular, we prove that for k≥2n−d−1k \ge 2^{n-d-1} we have f(n,k,d)=2dk−⌊k2n−d⌋f(n,k,d)=2^d k - \left \lfloor \frac{k}{2^{n-d}} \right \rfloor, while for n>22dk−k−d+1n > 2^{2^d k-k-d+1} we have f(n,k,d)=n+2dk−d−2f(n,k,d)= n + 2^dk-d-2, and also study the transition between these two ranges. While previous work in this direction has primarily employed the polynomial method, we prove our results through more direct combinatorial and probabilistic arguments, and also exploit a connection to coding theory.Comment: 15 page
    corecore